Math 254-1 Exam 4 Solutions

1. Carefully state the definition of "subspace". Give two examples from \mathbb{R}^2 .

A subspace is a vector space, that is contained within another vector space. Many examples are possible from \mathbb{R}^2 : $\{\overline{0}\}$, \mathbb{R}^2 itself, $Span(\overline{v})$ for any vector \overline{v} (in \mathbb{R}^2), the solution set to any 2×2 homogeneous system of linear equations. Note that \mathbb{R}^1 is *NOT* a subspace, since none of its vectors are in \mathbb{R}^2 .

2. Carefully state five of the eight vector space axioms.

It is important not only to have the axioms right, but the quantifiers (for all vectors \bar{u}, \bar{v} , etc.) You may find a list of the axioms on p.152 of the text. The names the book gives them (e.g. A_3) are unimportant.

3. Let $S = \{f(x) : f(3) = 0\} \subseteq \mathbb{R}[x]$ be the set of all polynomials that are zero at x = 3. Prove that this is a vector space.

S is a nonempty subset of $\mathbb{R}[x]$, so by Thm. 4.2 we need only check closure. If f, g are both in S, then f(3) = 0 = g(3). (f + g)(3) = f(3) + g(3) = 0 + 0 = 0, so f + g is in S. If f is in S, and a is any scalar, then (cf)(3) = cf(3) = c0 = 0, so cf is in S. S satisfies closure, hence is a subspace.

Alternate proof: Instead of two steps, closure can be verified in one step. If f, g are both in S, and k, k' are any scalars, then (kf + k'g)(3) = kf(3) + k'g(3) = k0 + k'0 = 0.

4. Determine, with justification, whether (1, 1, 1) is in Span(S), for $S = \{(1, 2, 3), (2, 0, 1), (-3, 2, 1)\}$.

The answer is yes, precisely when there are solutions to the linear system $\begin{bmatrix} 1 & 2 & -3 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}
\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$ We solve this in the usual way, with the augmented matrix $\begin{bmatrix} 1 & 2 & -3 & 1 \\ 2 & 0 & 2 & 1 \\ 3 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & -4 & 8 & -1 \\ 0 & -5 & 10 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & 1 & -2 & \frac{1}{4} \\ 0 & -5 & 10 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & 1 & -2 & \frac{1}{4} \\ 0 & 0 & 0 & -\frac{3}{4} \end{bmatrix}$

The last equation is 0 = -3/4, which has no solutions. Hence (1, 1, 1) is NOT in Span(S). There is no linear combination of the elements of S, that yields (1, 1, 1).

5. Let $W_1 = Span(S)$, for $S = \{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \}$. Let $W_2 = Span(T)$, for $T = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \}$. Prove that $W_1 \oplus W_2 = M_{22}(\mathbb{R})$ (the set of all 2×2 matrices).

Note that $W_1 = \{ w \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + x \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \} = \{ \begin{pmatrix} w & w \\ x & x \end{pmatrix} \}, W_2 = \{ y \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \} = \{ \begin{pmatrix} y & 0 \\ z & 0 \end{pmatrix} \}.$

Solution 1: We need to express every $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ uniquely as a sum of some vector from W_1 and some vector from W_2 . We have $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} w & w \\ x & x \end{pmatrix} + \begin{pmatrix} y & 0 \\ z & 0 \end{pmatrix} = \begin{pmatrix} w+y & w \\ x+z & x \end{pmatrix}$. The equations we get are w + y = a, w = b, x + z = c, x = d. These equations have a *unique* solution, namely w = b, y = a - b, x = d, z = c - d; hence $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} b & b \\ d & d \end{pmatrix} + \begin{pmatrix} a-b & 0 \\ c-d & 0 \end{pmatrix}$, where the first matrix is in W_1 and the second is in W_2 .

Solution 2: We use Thm 4.11, which requires two things: (1) $M_{22} = W_1 + W_2$, and (2) $W_1 \cap W_2 = \{\bar{0}\}$. To prove (1), we use the calculation from the first solution, although it is no longer important to have a unique decomposition. To prove (2), we need to find all matrices common to both W_1, W_2 . $\begin{pmatrix} w & w \\ x & x \end{pmatrix} = \begin{pmatrix} y & 0 \\ z & 0 \end{pmatrix}$. The only solution is w = x = y = z = 0, hence $W_1 \cap W_2 = \{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\} = \{\bar{0}\}.$